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Upper Bound on the Condensate in the 
Hard-Core Bose Lattice Gas 
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Using methods developed by G. Roepstorf, we prove an upper bound for the 
amount of condensate in a hard-core Bose lattice gas. 
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1, I N T R O D U C T I O N  

Roepstorff (4) proved the following inequality: 

<A'A> ~> <[A, A*]> { exp ~<[c*' i<[~, [ "  C]]><[~, ~ * ] > C , ] > i  = - l } ' (1.~ 

where <.-.  ) stands for thermal expectation: 

Tr(e ellA) 
<A > Tr(e-~H) (l.2) 

and A and C are any two bounded operators. In a second paper, (5) the 
same author used this inequality to prove an upper bound on the amount 
of condensate for a Bose gas in R d, d/> 3, with arbitrary pair interaction. 

Exploiting the same methods, we give an upper bound for the amount 
of condensate for a hard-core Bose lattice gas. As, due to the hard-core 
condition, the communication relations of the emerging creation and 
annihilation operators are different from the standard bosonic ones, this 
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upper bound is better than that proved by Roepstorff, and reflects the 
p ~ 1 - p symmetry of the condensation in this model. (See the remarks 
after Proposition 1.) 

This result is an adaptations of Roepstorff's method; we do not claim 
any originality of the ideas. Nevertheless, as condensation of the hard-core 
Bose lattice gas is an intriguing open problem, we think that this applications 
is worth mentioning. 

2. T H E  U P P E R  B O U N D  

We consider a Bose lattice gas on Z d, or on a d-dimensional discrete 
torus A, interacting via a pair potential which has a hard core, otherwise 
arbitrary. The local creation and annihilation operators a+(x), a(x), 
x e Z d, satisfy the following commutation relations: 

[a(x), a(y)]  = [a+(x),  a+ (y)]  =0,  [a(x), a+ (y ) ]  = 6x, y(1 - 2n(x)) 

(2.1) 

where the local occupation number operator is 

n(x) = a+(x) a(x) = In(x)] 2 (2.2) 

The Hamiltonian of our Bose gas is 

1 1 
H ~  2 ~ a+(x)a(Y)+-2 ~ V(x-y)n(x)n(y)+# ~ n(x) 

( x , y )  x , y ~ A  x ~ A  

(2.3) 

where the first sum extends over neighboring sites and periodic boundary 
conditions are considered. 

We denote the density of the gas by p, p = (a+(x)a(x)). The amount 
of condensate (i.e., the order parameter of Bose Einstein condensation) is 
defined (cf. ref. 1) as 

t 
pc=Alimzd]A]2 ~ (a+(x)a(y)) (2.4) 

x, yE  A 

We prove the following upper bound for the amount of condensate: 

P r o p o s i t i o n  1. In three and more dimensions 

Pc(P, 8)~< min{x(p,/3), p(1 -- p) } (2.5) 
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where x(p, fl) is the unique solution of the equation 

and 

coth 
/~(1/2-p)  rain{p, 1 - p }  D(p) 

_~,~]d X 
dp 

(2.6) 

d 
D(p) = ~ (1 - c o s  Pi) (2.7) 

i=l 

Remarks. (1) As in one and two dimensions, Eq. (2.6) has no 
positive solution; the theorem of Mermin and Wagner is recovered: in less 
than three dimensions there is no Bose-Einstein condensation in these 
models. 

(2) For the sake of comparison: the upper bound proved in ref. 5, 
applied to the lattice gas case, would result in a siilar proposition, with 
x(p, fi) being the unique solution of the equation 

f 1-1 1 exp tip D(p) I dp (2.8) 
X = P - -  (-~)~) d .  E_~,~]a X 

Roepstorff's upper bound is completely independent of the interaction. In 
our derivation the hard core is taken into account, hence the improvement. 

(3) Apart from being somewhat stronger, our upper bound has the 
advantage of showing the same symmetry as the condensate itself: 

Pc(P, fl) = pc(1 - p, fl) and x(p, fl) = x(1 - p, fi) (2.9) 

Proof. We apply Roepstorff's inequality with the following choices of 
the operators: 

H~=Ho--~ ~', [a+(x)+a(x)] 
xEA 

(2.1o) 

with periodic boundary conditions on the discrete torus A. Note that a 
symmetry-breaking term is added to the Hamiltonian (2.3). (---)~,~ will 
denote thermal expectation with respect to this Hamiltonian. We have 

A =ci(p)= }-" ei"Xa(x), 
XGA 

A * = c i + ( - p )  = ~ e-ipXa+(x) 
x~A 

(2.11) 
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c = ,~(p) = Y' ~ ' ~ ~ n ( x ) ,  
x~A (2.12) 

C * = h ( - p ) =  ~' e-ipxn(x) 
x E A  

The commutators appearing in (1.1) will be 

[A, A*] = [~(p), f i+ ( -p ) ]  = [AI -2  ~ n(x) (2.13) 
x E A  

[A, C*] = [fi(p), h ( - p ) ]  = ~ a(x) (2.14) 
x ~ A  

[c, [H, C* ] ]  = [~(p), [H~, ~ ( - p ) ] ]  

= Y~ I ~] (1-cos p.3) a+ (x) a(x + 3) 
x~A t.6~A,161=l 

+ g [a § (x) + a(x)] (2.15) 

And the corresponding expectations are 

<[A,A*])=<[d(p),a+(--p)])A,~=IA[[1--2<n(O))A,A (2.16) 

<[A, C*]> = < [a(p), h ( - p ) ]  >A,~ = I11 <a(0)>A,~ (2.17) 

<[c, [H, C*]]> = < [~(p), [H~, ~(-p)]]  >~,o 

=IAI{ ~ (1--cosp'3)<a+(O)a(6))A,,+~<a(O))a,,} 
OEA, 16l = 1 

(2.18) 

We use the inequality 

{a+(0) a(6))A,~ <~ min{ {a+(0)a(O))A,~, {a(O)a+(0))a,.} 

= min{{n(0))A.~, 1 -- (n(0))A.~} (2.19) 

to get 

<[C, [H, C*]]  )~< IAI (D(p)min{<n(0))A,~, 1 - -  < n ( 0 ) > A , e }  +e<a(O)>A,e) 

(2.20) 
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Pluging all these in (1.1), we get 

IAI - '  ( a  + ( - p) gt(p) )A,~ 

>~(1 -- 2(n(0))a.~) 

{ (fl(D(p)min{(n(O))A,*,l--(n(O))A,~}~ } ~ 
\ +e(a(O))a,~)(1--2(n(O))a,~) ] 

x exp ( a ( 0 ) ) 2  ~ 1 (2.21) 

And now taking the limits A .* Z d, e N 0 and integrating over the cube 
I - re ,  reid (in this order!) leads us to the inequality 

1 {expflD(p)min{p,l_p}(l_2p ) }-1 
P-fic>~(1-2p)~f  E .... 3d ,2 -1 dp 

Where 

(2.22) 

t /= l im lim (a(O))A,, (2.23) 
tzNO A ~ Z d 

1 
f ic=l im l i m d T , 2  ~, (a+(x)a(y))A,~ (2.24) 

e~ ,O  A / * Z  IZI ] x , y ~ A  

[-Alternatively, one can get (2.22) by summing over p v a 0 in (2.21) and then 
taking the limit A 7 zd.] Using the inequalities 

Pc ~< I/2 ~< tSc (2.25) 

(the first one of which is proved in the last section of ref. 5; the second one 
is trivial) we arrive at 

Pc <~ x(p, fl) (2.26) 

as given in (2.6). As mentioned in ref. 3, the bound 

pc<~p(1 -p) (2.27) 

easily follows from the method of ref. 2, applied to the hard-core Bose 
lattice gas case. We do not repeat here that argument. 
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